

#### **NUECES BBASC STUDY #3**

# NUECES WATERSHED PRE- AND POST-DEVELOPMENT NUTRIENT BUDGETS

NUECES ESTUARY ADVISORY COUNCIL JUNE 22, 2015 PAULA JO LEMONDS, PE, PG

#### **DISCUSSION**

**Background** 

**Status** 

**Results** 

**Schedule** 

#### **BACKGROUND**

- Nueces BBASC work plan
  - Tier 2b Recommendation
- Nueces BBEST
  - $_{\circ}\;$  BBEST Recommendations Report
    - Sec. 5.2 Nutrient Considerations
- Nueces BBASC
  - BBASC Recommendations Report
    - Sec. 4.3.2 Nutrient Considerations

#### **GOALS**

- Develop nutrient budgets based on quantitative understanding of natural supply of all nutrient forms and anthropogenic changes in these supplies over time for Nueces Bay watershed
- Determine annual loads for both the predevelopment and present condition

Source: Nueces BBASC work plan



5

#### **SCOPE OF WORK**

- Task 1 Compile Data
  - Compile Water Quality and Hydrologic Data
- Task 2 Perform Data Evaluation and Modeling Analyses
  - Perform Data Evaluation
    - Available data, sampling stations, and subwatersheds
    - Identify appropriate stations
  - Refine Linear Regression Analyses
  - Estimate Reservoir Influence Sink/Sources
  - Water Quality Correlations to Anthropogenic Changes
  - Pre- and Post-Development Loadings





#### **ANALYSES**

- Land Use
- Mission-Aransas Watershed
- Wastewater Treatment Plant Effects
- Effects of CCR Construction
- Annual Load Calculation for Dry,
   Average and Wet Years; Pre- and Post-CCR Construction



#### LAND USE ANALYSIS

Using NLCD to analyze land use changes over time



#### **LAND USE**







 Cultivated acres relatively steady





### MISSION-ARANSAS WATERSHED ANALYSIS

- Very little development in watershed
- Hypothesized that M-A watershed would provide an additional evaluation as to whether changes in land use could be influencing water quality.



### MISSION-ARANSAS WATERSHED ANALYSIS

- Upper Mission River had higher nutrient concentrations than upstream stations in less developed portions of Nueces
  - However, NO<sub>x</sub> higher in Nueces compared to upper Mission River
  - Where comparisons possible, observed nutrient loadings in upper Aransas were even higher than observed in Mission River and upstream stations in the Nueces.
- One explanation for difference in nutrient loadings is land use in Aransas River subwatershed.
  - Land use is predominantly hay/pasture and cultivated crops



#### **WWTP EFFECTS**



#### PLEASANTON EXAMPLE

- Station 12981, Atascosa River at Pleasanton
- NH<sub>4</sub>, NO<sub>x</sub>, TP, PO<sub>4</sub> and perhaps Chl-a higher at 12981 than 12980
- NRA BSR (2013a) states that much of upper Atascosa River is intermittent or ephemeral
  - If flows were not augmented by effluent from the Pleasanton WWTP outfall, river might be classified as intermittent, except for lowermost segment.



#### **UPSTREAM TO DOWNSTREAM**

- 12981 Pleasanton
- 12980 Downstream





Regression analysis, Station 12981

Nueces Tributaries, Texas (1970-2014)

Regression analysis, Station 12980

Nueces Tributaries, Texas (1970-2014)

#### DETERMINING THE EFFECTS OF CCR CONSTRUCTION

- Assumed data pre-1986 represented pre-construction and data post-1986 represented postconstruction period
  - N species decline between pre- and post- reservoir construction
    - TKN decline may have begun prior to construction
  - TP and PO<sub>4</sub>: Some increases in TP and PO<sub>4</sub> in the Frio River and San Miguel Creek post-construction that do not appear downstream of the reservoir at Three Rivers
  - Flow: Low flow conditions below CCR are greater than before CCR due to flow management

### **EFFECTS OF CCR -** TKN

- TKN data from three TCEQ locations
  - Frio River at Tilden, Station 13023
  - San Miguel Creek nr Tilden, Station 12983
  - Three Rivers, Station 12979





**Nutrient Distributions, Station 12979** 

### EFFECTS OF CCR - TOTAL PHOSPHORUS

- Nutrient data from two TCEQ locations at
  - Frio River, Station ID 13023 (Figure 7-1) and
  - San Miguel Creek, Station ID 12983 (Figure 7-2)
  - Three Rivers, Station 12979





Observed Concentration Estimated Concentration

### ANNUAL LOAD CALCULATIONS

- Load = Concentration x Flow
- Concentration time-series
- Dry, average, wet years of USGS streamflow

### Representative flow years based on Nueces at Mathis (USGS 08211000, TCEQ 12965)

|           | Dry  | Average | Wet  |
|-----------|------|---------|------|
| Pre-1986  | 1984 | 1974    | 1971 |
| Post-1986 | 2008 | 1993    | 2002 |

- Indication of nutrient load delivered to Estuary
- Also looked at dry, avg, wet years based on Calallen precip statistics

#### **CONCENTRATION TIME-SERIES**

#### Nutrient Distributions, Station 12979 Nueces Tributaries, Texas (1959-2014)



#### **LOADS**

■ TP, TN, TKN, NOx









## EPA ECOREGION REFERENCE CONDITIONS



| Parameter                                                                  | EPA 25th Percentile Reference Conditions      |                                               |                                               |                                              |  |  |  |  |
|----------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------|--|--|--|--|
| (mg/L)                                                                     | Ecoregion IV,<br>Subecoregion 30 <sup>1</sup> | Ecoregion IV,<br>Subecoregion 31 <sup>2</sup> | Ecoregion IX,<br>Subecoregion 33 <sup>3</sup> | Ecoregion X,<br>Subecoregion 34 <sup>4</sup> |  |  |  |  |
| Total Phosphorus                                                           | 0.008                                         | 0.028                                         | 0.1                                           | 0.126                                        |  |  |  |  |
| Total Kjedahl<br>Nitrogen (TKN)                                            | 0.18                                          | 0.27                                          | 0.543                                         | 0.74                                         |  |  |  |  |
| Total Nitrogen                                                             | 0.27*, 0.55 <sup>†</sup>                      | 0.49*                                         | 0.681*, 0.935 <sup>†</sup>                    | 0.88*, 0.86 <sup>†</sup>                     |  |  |  |  |
| Nitrite + Nitrate - N                                                      | 0.09                                          | 0.22                                          | 0.138                                         | 0.14                                         |  |  |  |  |
| Chlorophyll a**                                                            | 0.002                                         | 0.002                                         | 0.000733                                      | 0.0021                                       |  |  |  |  |
| Turbidity (FTU)                                                            | 0.73                                          | 3.83                                          | 10.9                                          | 12.27                                        |  |  |  |  |
| * Calculated                                                               |                                               |                                               |                                               |                                              |  |  |  |  |
| † Reported                                                                 |                                               |                                               |                                               |                                              |  |  |  |  |
| * Chlorophyll a measured by Spectrophotometric method with acid correction |                                               |                                               |                                               |                                              |  |  |  |  |

#### CONCLUSIONS

- Land use slowly changing. Urban areas increasing in size. Areas of cultivated crops seem to remain steady (1970 to present).
- Some locations are affected by WWTP discharge.
- Effects of CCR Construction
  - N species decline between pre- and post- reservoir construction
    - TKN decline may have begun prior to the construction
  - o TP and PO<sub>4</sub>: Appear to be some increases in TP and PO<sub>4</sub> in the Frio River and San Miguel Creek post-construction that do not appear downstream of reservoir at Three Rivers
  - o Flow: Low flow conditions below CCR are greater than before CCR due to flow management
- Difficult to determine statistically significant relationships between flow and nutrients
  - Dataset is representative of a range of conditions.
  - Correlations could improve if they were done for specific temporal periods, rising or declining parts of hydrograph, or seasonally.

#### RECOMMENDATIONS

- Evaluate predictive scenarios of loadings upstream and downstream of CCR with CCR/LCC
   System operating under different operational schemes
- Evaluate effects of other development scenarios, including future build-out land use conditions, on nutrient loadings
- Quantify effects of seasonality on nutrient loadings.
- Further quantify effects of reservoirs in Nueces Watershed.
  - o Fate and transport, nutrient processing uptake, losses, releases, dissolved oxygen
- Identify and quantify nonpoint source component of nutrient loadings in Nueces Watershed
  - One way to accomplish quantification of nonpoint source loadings is with watershed-scale nutrient loading model that takes into account point sources, as well as nonpoint sources.

### TASK 3 – MEETINGS AND REPORT

- Task 3 Meetings and Report
  - NEAC Kickoff Meeting June 16, 2014
  - NEAC Meeting Update October 20, 2014
  - NEAC Meeting Update February 23, 2015
  - NEAC Meeting Update June 22, 2015
  - o Draft Report: June 30, 2015
  - Final Report, Contract Deadline: August 31, 2015





- Station 12999- Figure 4-14
- Station 12965-Appendix, Page 52
- Station 12979-Figure 4-15
- Station 12980-Figure 6-6
- Station 13024-Appendix, Page 61



Regression analysis, Station 12979

Nueces Tributaries, Texas (1970-2014)

| JSGS_8190 |         |           | 65 217  | _         |           | nstream Ga | 174 600 | <br>      | 35    |           | Corpus) |     |
|-----------|---------|-----------|---------|-----------|-----------|------------|---------|-----------|-------|-----------|---------|-----|
| average:  | 63,413  |           | 65,217  | average:  | 300,975   |            | 174,663 | average:  | 35    |           | 30      |     |
|           |         | 4005 0044 |         | geo mean  |           | geo mean   | 106,381 | 4070 4005 |       | 4005 0044 |         |     |
| 1970-1985 |         | 1986-2014 |         | 1970-1985 |           | 1986-2014  |         | 1970-1985 |       | 1986-2014 |         |     |
| 1980      | 16,470  |           | 7,332   | 1984      | 47,248    |            | 37,988  | 1982      | 22.77 | 2011      | 12.66   |     |
| 1978      | 27,440  | 2014      | 8,406   | 1983      | 54,263    | 2009       | 39,873  | 1977      | 26.55 | 1989      | 16.65   |     |
| 1983      | 28,543  | 2013      | 14,342  | 1982      | 105,443   | 2006       | 42,512  | 1984      | 26.89 | 1996      | 19.01   |     |
| 1979      | 32,156  | 2009      | 17,004  | 1978      | 112,263   | 2013       | 43,355  | 1974      | 27.58 | 1988      | 19.33   |     |
| 1984      | 33,268  | 2012      | 17,169  | 1972      | 150,368   | 2011       | 43,506  | 1975      | 29.69 | 2012      | 19.51   |     |
| 1982      | 36,012  | 1989      | 19,500  | 1970      | 180,665   | 2014       | 48,476  | 1978      | 31.55 | 2009      | 20.84   |     |
| 1974      | 50,317  | 2006      | 22,038  | 1979      | 183,261   | 2012       | 50,937  | 1980      | 32.61 | 2008      | 23.15   |     |
| 1975      | 50,855  | 1993      | 23,700  | 1975      | 188,417   | 2010       | 54,589  | 1970      | 33.92 | 2013      | 25      |     |
| 1970      | 56,310  | 2008      | 26,594  | 1974      | 196,536   | 1988       | 57,763  | 1972      | 34.69 | 2005      | 25.08   |     |
| 1972      | 64,369  | 2010      | 31,279  | 1985      | 236,812   | 2000       | 58,231  | 1979      | 37.14 | 2000      | 25.9    | /   |
| 1985      | 68,317  | 1995      | 33,684  | 1977      | 266,578   | 1996       | 58,523  | 1983      | 37.87 | 2014      | 27.08   | _/  |
| 1977      | 78,523  | 1988      | 36,329  | 1980      | 283,516   | 1989       | 60,802  | 1985      | 39.65 | 2006      | 27.54   | _/_ |
| 1976      | 84,524  | 1994      | 40,524  | 1976      | 467,987   | 1986       | 64,335  | 1971      | 40.71 | 1999      | 27.87   | /   |
| 1973      | 116,091 | 2005      | 56,935  | 1973      | 525,632   | 1995       | 77,821  | 1976      | 43.55 | 1990      | 27.97   |     |
| 1981      | 133,250 | 2003      | 57,389  | 1981      | 532,307   | 1991       | 92,005  | 1973      | 45.46 | 1986      | 29.51   |     |
| 1971      | 138,161 | 1999      | 58,364  | 1971      | 1,284,308 | 1994       | 93,991  | 1981      | 45.76 | 2001      | 32.14   |     |
|           |         | 2002      | 58,460  |           |           | 1999       | 100,190 |           |       | 1987      | 32.33   |     |
|           |         | 1986      | 63,850  |           |           | 1993       | 101,551 |           |       | 2003      | 33.03   |     |
|           |         | 2000      | 84,151  |           |           | 2005       | 113,366 |           |       | 1995      | 33.11   |     |
|           |         | 1990      | 85,830  |           |           | 1997       | 125,382 |           |       | 1994      | 33.73   |     |
|           |         | 1996      | 86,082  |           |           | 2001       | 130,139 |           |       | 1993      | 34.95   |     |
|           |         | 1991      | 97,526  |           |           | 1998       | 168,851 |           |       | 1998      | 36      |     |
|           |         | 2001      | 111,889 |           |           | 1990       | 177,480 |           |       | 2004      | 38.56   |     |
|           |         | 1998      | 121,648 |           |           | 2003       | 256,412 |           |       | 2002      | 39.34   |     |
|           |         | 1992      | 128,554 |           |           | 1987       | 381,824 |           |       | 1991      | 41.58   |     |
|           |         | 1997      | 131,474 |           |           | 2004       | 452,732 |           |       | 1992      | 41.82   |     |
|           |         | 1987      | 146,386 |           |           | 1992       | 466,299 |           |       | 2007      | 42.59   |     |
|           |         | 2007      | 149,315 |           |           | 2007       | 539,718 |           |       | 1997      | 43.12   |     |

2002 1,126,578

2010

43.55

2004 155,525